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Abstract

This paper re-examines the venerable lumped model of unsteady heat conduction by means of a detailed study of the exact temperatur
distributions in bodies of elementary geometry (i.e., large slab, long cylinder and sphere). The space-mean temperature is used as a vehicl
for demonstrating that the lumped calculation directly follows as a particular case from the infinite series solution of the general distributed
model. In this manner, several methods to find a limit Biot number can be established as simpler alternatives to the traditional procedure.
Additionally, the discussion offers a different perspective of this classical subject of heat conduction theory, gaining more insight on the
limiting behavior of unsteady temperature distributions.

0 2003 Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction From a strict quantitative standpoint, the question is, how-
ever, how smalBi should be in order to comply with the

Fundamentally, the Biot numbdj = hL/k, constitutes above condition.

a dimensionless form of the convective coefficigntthat For bodies of simple geometry (large slab, long cylin-
regulates the heat transmission between the surface of a solidler and sphere), the answer has been traditionally deduced
body and a neighboring fluid. This heat exchange processfrom the distributed model of heat conduction [1,2]. When
occurs by way of an interplay of two thermal resistances, subjected to a convective boundary condition, the analytical
one due to heat conduction within the body whose thermal temperature solutions of the one-dimensional heat conduc-
conductivity isk, and the other arising from heat convection tion equation consistently reveal that whenever

between the surface and the fluid.

To accept a simplistic lumped model of unsteady heat
conduction, the conductive thermal resistance has to be negthe ratio of the temperature at the surface to that at the center
ligible in comparison with the convective thermal resistance, of the body differs from unity by less than 5%, i.e.,
meaning thaBi becomes very small [1,2], i.e.,

Bi <0.1 2

T(L,)-T; T,()—Ty
Bi<l= T~TL() O  Ten T " To 1> 0.95 3)

where T is the real temperature field arif}, designates
its estimation via the lumped assumption. Thereby, this
criterion can be satisfied by certain bodies that

The development of this criterion involves a trial-and-error
procedure, in which the two extreme local values Tof
are compared for all times under progressively lower Biot
numbers until Eq. (3) is satisfied.

Based on these premises, the following categoric state-
ment arises: The simple lumped model is amenable for situ-
ations which are characterized By < 0.1, thus collapsing
the entire temperature distribution into a single value with-
out large errors, Eq. (1). In contrast, Bir> 0.1, the lumped

* Corresponding author. model fails, and the general distributed model needs to be
E-mail address: tdyfqdb@posta.unizar.es (C. Cortés). applied forcibly in order to computg.

(a) are very small in size,

(b) are constructed from materials with large thermal con-
ductivities, or

(c) are exposed to weak convective environments.
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Nomenclature
A convective area Greek letters
Bi Biot number=hL/k o thermal diffusivity,= &/ pc
c specific heat n dimensionless space coordinatey /L
Cy constants of the series solution 0 dimensionless temperature,
f eigenfunctions of the series solution _ =T =Tp)/(Ti = Ty)
. . . oo 0 dimensionless space-mean temperature,

F space integrals in the series solutioroof — (T —Tp)/(Ti — T})

Eq. (18) 0 density ‘
h convection coefficient T dimensionless time or Fourier numberpz /L2
k thermal conductivity T* dimensionless critical times for the one-term
L characteristic length (half-thickness of a slab, approximation

radius of a cylinder, radius of a sphere) & eigenvalues for the series solution
s geometric parameter Subscripts
t time 1 first term of the series, one-term solution
T temperature f fluid
T space-mean temperature i initial
v volume L lumped model _ _

) . o ) 0 center of the one-dimensional bodys= 0

X space coordinate (Cartesian, cylindrical radius, surface of the one-dimensional bogjy= 1

spherical radius) n general term of the series

Notwithstanding, a salient feature of this line of reasoning transfer coefficient/,, and a constant fluid temperature,
should be made apparent. The comparison, as well asTy. The thermophysical properties of the material are not
its companion error condition, Eq. (3), refer only to the influenced by temperature.
exact temperature distribution. A literature search indicates An adequate set of dimensionless variables for this
that a direct scrutiny involving the models themselves, in problem is
conjunction with the two temperatures produced by them T—Ty x at KL
(T andTy), has not been reported so far. 0=7—70 = T=17 Bi = - (4)

This paper seeks to answer the aforesaid question in a l 4
convincing manner, linking the variations of temperature WhereT; — Ty, L and L2/« are the scales adopted for the
with time produced by the two candidate models. To temperaturd’, the coordinate and the time, respectively.
accomplish this objective, the spatial average TofT, The dimensionless timeg, is also frequently designated
is considered as the quantity to be Compared mh as the Fourier number. The Biot numbBr, emerges as a
In fact, throughout the derivations and calculations, it is controlling parameter. In accordance with these definitions,
demonstrated that the |umped mode' is a particu'ar Casethe distributed model of the phySical situation described
of the more general distributed model for the space-meanabove can be compactly formulated as follows:
temperature. When the latter is applied to the three simple Heat conduction equation:
bodies in question under vanishingly small Biot numbers, 56 1 9 , 100
the resultant infinite series solution forreduces to asingle 57 =~ ps—1 %( a_,]>
exponential expression which depends solelyBinThis
expression is finally shown to match the classical, lumped
description of unsteady convective cooling. 0,0 =1 (5b)

Boundary conditions:

(5a)

Initial condition:

2. Convective cooling of simple bodies 2—9(0, 7)=0 (5¢)
n

Fig. 1 illustrates the unsteady cooling of a one-dimen- %(1, 7)=-Bio(1, 1) (5d)
sional solid (large slab, long cylinder and sphere) with 97

uniform initial temperaturel = T;, thoroughly. Atr = In Eq. (5a), the geometric parameteidentifies the appro-
0, the body surface is suddenly exposed to a convectivepriate coordinate system= 1, 2, 3 for Cartesian, cylindrical
environment which is characterized by a uniform heat and spherical, respectively.
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Fig. 1. Unsteady cooling of elementary one-dimensional solids. (a) Symmetrical large plate. (b) Long cylinder. (c) Sphere.

Table 1
Eigenvalues, eigenfunctions and constants of the series solution, Eq. (6)

Geometry Eigenvalues, Constant, Eigenfunctionsf (a)
Large plate &, sing, — Bicost, =0 &I—Jrsz% cosa
Long cylinder £0J1(En) — Bi Jo(&,) =0 2J16n) Jola)

Sphere &y cosE, + (Bi — 1) sing, =0

En(JZ En)+I2En))

2(singy —&, COSER)
&n—siné, costy

sina
a

The exact dimensionless temperature distributions,
0(n, 1), for each of the three basic geometries may be ob-
tained by applying the method of separation of variables to
Egs. (5), to yield the summation of an infinite series:

001, 1) =Y CofEum) exp(—£77)

n=1

The corresponding eigenvalués, eigenfunctionsf and
constants”,, have been summarized in Table 1 [1,2].

(6)

3. Lumped model of unsteady conduction

Whenever some restrictions are met, the same situation
can be also described by a far more simple lumped model.

It is interesting to notice that a characteristic time does
clearly appear in Eq. (8), given by the quotiestV/hA.
Consequently, this time scale differs from the one employed
previously in the distributed model, i.6.2/«. On the other
hand, the influence of geometry reduces to the volume-to-
area ratio,V/A, to which the meaning of a characteristic
length is usually attributed. In this manner, the length scale
for our three simple bodies would be also differeif:Z./2
or L/3, depending on whether a large plate, a long cylinder
or a sphere is being studied, respectively.

In spite of these considerations, Egs. (7), (8) can be cast
in a coherent nondimensional form by using the previous
definitions of 6, and Bi in Eq. (4). To this end, it is
also necessary to reinterpret the parametenoting that
the equalityV/A = L/s holds for the three elementary
geometries. Hence, Eqs. (7), (8) become

The classical derivation starts by assuming the temperature

field T adequately represented by a uniform value, which
we will designate ag7;. Then, an overall energy balance is
applied to the body at an arbitrary time

pchd% =—hA(TL —Ty) (7a)

which, along with the initial condition

L0 =T (7b)

can be easily integrated to give

Lo —Tr _ exp(—ﬂt> (8)
T, —T¢ pcV

do
L _$BiOL(7)

(9a)

dr
6.(0)=1 (9b)
0 (t) =exp(—s Birt) (20)

4. The concept of a space-mean temperature

A rigorous comparison between the distributed and lump-
ed models should now directly proceed to examine their
independent solutions given by Egs. (6) and (10). However,
any intermediate step that properly eliminates the spatial
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dependence of the exact solution would be indeed very Table 2 )
convenient. Sincé(n, t) is bounded im, this avenue could FunctionsF (&,) for the series solution of the space-mean temperature

consist in adopting its maximum, which arises at the body E9-(17)
center,0(0, t) = 6,(t), and its minimum, occurring at the  Geometry F (&)
surfacep (1, ) = 6,(r). But independently of this idea, the  |arge plate S'g_f
space-mean temperature offe_trs more simplicity, and,_as we _ e
will later demonstrate, more significance to the analysis. ~ Long cylinder =5
The spatial average of the dimensional temperaluie Sphere 3(5ing —n COSEn)
defined as i
— 1
T = v _/ rav (11) The correspondence between these expressions and the

4 lumped model equations (9) is apparent. From a mathemati-
If we particularize the analysis to the one-dimensional cal standpoint, it can be said that a problem involving a par-
geometries, and use the definitions expressed in Eq. (4), theial differential equation in two independent variables (space

corresponding nondimensional form reads n and timet) having the temperature as the dependent
1 variable, Eq. (5a), has been gradually reduced to a first order,
= s—1 ordinary differential equation for the spatial average temper-
0(t) _3/9” dn (12) atured(r), Eq. (16a).
0 However, some information must have been lost due to

To explore the meaning of this global quantity, we may the integration process. The consequence is that the right-
recall that the heat conduction equation (5a) is merely an hand side of Eq. (16a) is expressed in terms of the surface
energy balance in differential form. Therefore, this character temperaturé(r). Since this quantity is unknown a priori,
must be retrieved in a global sense by performing an the degraded Egs. (16) cannot be used to obtain an exact

integration with respect to the space variahleFirstly, solution, although they may constitute the starting point for
Eq. (5a) is rearranged as the implementation of approximate methods of the integral
90 5 30 type (see, for instance, [4]).
ns‘la— = 8_( 5‘18—> (13) In order to calculated, the series solution, Eq. (6), is
roon " introduced into Eq. (12), arriving at

Both sides are now integrated withfrom O to 1, and then ~
multiplied by the parameter. 6(r) = Z CoF (&) exp(—gfr) (17)

1 n=1

a0 ad a0
s / 775_15 dn = S/ o (775_1%> dn (14) whereF (£,) is a shorthand notation for the integral
0 1

The left-hand side is reordered to permit the differentiation r(g,) =S/f($nn)n"’71 dn (18)
with t to occur first by virtue of the Leibnitz theorem [3], 5

whereas the right-hand side can be integrated immediately:

L which is explicitly given in Table 2 for the three coordinate

d 1 systems.
e / n' 0 dy Incidentally, one should note that identical results can be
0 obtained by particularizing Eqg. (6) t9 = 1, substituting
100 100 0s(7) =.9(13 7) in the g!o_b_al balaqge, Eqg. (16a), and then
=s|n"" " — - — (15) integrating it under the initial condition.
an n=1 an n=0

The term varying with time is recognized as the dimen-

sionless space-mean temperat@iydeq. (12). Invoking the 5. Lumped approximation of the space-mean
boundary conditions, Egs. (5c) and (5d), the second term ontemperature

the right-hand side vanishes identically and the first term

simply becomes-sBi6(1, 7). Therefore, the conversion In any case, the preceding derivation sheds more light into
procedure ends up with the following equation: the meaning of a lumped model. When thelependence

d9 _ of the temperature distributiof is weak,6(n, t) ~ 6(7),
i Bi 0;(7) (16a) and, in particularg (1, t) = 6,(t) ~ (). Substituting this

. - . . approximation in Eq. (16a), we retrieve Eq. (9a), so that
go (;thg f?nm'g“al cg%nm::gn 1(;a.n be attached, as easily the differential problems stated by Egs. (9) and (16) are
_e ucedtro gs. (5b) and (12): now identical, and thu8(t) ~ 6, (tr) becomes an adequate

00)=1 (16b) representation of the entire temperature field. Accordingly,



C. Cortéset al. / International Journal of Thermal Sciences 42 (2003) 921-930 925

The graphical results for differeri show how the
generic criterion stated by Eq. (1) takes form. The classical
inequalityBi < 0.1 approximately assures a maximum error
6 — 60, < 0.01 for the three simple bodies in hand, i.e., that
60~0r.

Interestingly, this latter condition is slightly more sensi-
tive to the geometry than the traditional condition of unifor-
mity given by Eg. (3). FoBi = 0.1, the maximum tempera-
ture differencesin Fig. 2 are 0.0121 (slab), 0.0091 (cylinder)
and 0.0073 (sphere). In contrast, more precise figures for
the temperature ratio of Eq. (3) Bt = 0.1 are very alike:
0.9520, 0.9518 and 0.9517, respectively. Therefore, the tra-
ditional condition is somehow hiding these differences.

6. One-term approximation of the space-mean
temperature

The main feature of the lumped model solution, Eq. (10),
is the exponential decay of temperature with time. An
intriguing aspect of the exact solution provided by Egs. (6)
and (17) is that it parallels the same behavior, but in a rather
contorted way. Due to the periodic (or almost periodic)
character of the eigenfunctions, there is an infinite number
of increasing eigenvalues . Since the general term of the
infinite series contains the factor e{xp;fr), its magnitude
decreases with for a givent. Therefore, an instant of time
should exist at which the summation can be substituted by
its first term with arbitrary precision. From that time on,
Egs. (6) and (17) reduce to

61(1, 7) = C1f (E1m) exp(—£{7) (19)
61(7) = C1F (§1) exp(—£{) (20)
© ’ The preceding simplification is of course remarkable.

In fact, the above equations have been traditionally used
Eig. 2. Difference between Iumpe_d and exact space-mean temperatures VSfor giving the exact solutions of unsteady cooling without
time. (@) Large plate. (b) Long cylinder. (c) Sphere. resorting to the summation of a series. The Heisler-Grober
_ charts [5,6] are the most representative example of this
the spatial average should constitute the objective basis widespread practice. However, it is worth to remember
for studying the accuracy of the lumped solutign that Eq. (19) is only a partial solution, valid for long
The comparison betweeh and ¢, is accomplished in  times. In particular, it does not satisfy the initial condition,
Fig. 2 by the simple expedient of representing the difference Eq. (5b). The usual criterion for accepting the first-term
® — 0. versust, with the Biot number as a parameter. approximation admits an error
Eq. (17) has been evaluated numerically with an absolute
precision better than 18°, and the scales are logarithmic 1€ — 01/ < 0.01 (21)

be always positive, indicating that a lumped calculation 5 congdition results in a critical dimensionless time [7]:
overestimates the cooling of the body, inasmuch as the

conduction resistance is neglected. The deviation 6;
exhibits a maximum with respect to, which arises from
the fact that both temperatures share their initial condition,
Egs. (9b) and (16b). Starting from= 0, the error grows, but ~ So that, ift > t*, Eq. (19) accurately represents the exact
it should end at zero, since the exact and lumped solutionssolution, i.e.f ~ 0;. Furthermore, if this is satisfied at every
also share an identical asymptotic character, due to thepointn, it should also apply to the spatial average. In other
influence of the exponential functions. words, whernr > t*, Eq. (20) is also accurate afdv ;.

0.24 large plate
*=1{0.21 long cylinder (22)
0.18 sphere
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Calculations between = 0 andt* demand the summa-  butC1 becomes indeterminate. This limit can be reduced to
tion of the series implied by Egs. (6) and (17), with progres- expressions of the type sin/é1 and J1(&1)/§1, which do
sively worse convergence with decreasing time. There arehave a definite value &4 = 0. For the sake of clarity, we
however other possibilities, perhaps the most popular beinghave left the mathematical details to an Appendix A. The fi-
based on short-time expansions of the Laplace transform [8],nal result is thatC1 equals unity whei is made arbitrarily
which is an effective method in the absence of curvature. In small.
any case, the question has been also tackled from a more Summarizing, the limit of the constanty asBi — 0 can
general perspective. The one-term solution is of exponen-be expressed concisely as:
tial nature. Due to this unique attribute, Boussinesq desig- 1 n=1
nated it as a fundamental solution of unsteady heat conduc-BIi'T0 Cn = [O n>1
tion (isee,. for instance, the book of Kud.ryav_tse\./ [90). In the At a first glance, the discussion may appear trivial. Using
Russian literature, the one-term apprOX|_mat|on IS c_ommonly Eq. (24) ank; = O in the series solution, namely, Egs. (6)
referreq to asthe regular_c_o_olmg, cc_)r_1ce|ved asan mtermedl—and (17), we obtai® = § = 1. This reflects the obvious
ate regime between_the initial condition and the final steady fact that an insulated bodgj = 0, would remain forever at
state. Patankar [10] m_d_epend_ently noted the analogy of thes he initial state. Notwithstanding that, we can alternatively
concepts and the familiar notions of entrance and full devel- consider the problem in whicBi — 0 without completely

opment in forced convection theory. vanishing. Then, Eq. (24) indicates that, Bisdecreases,
the tendency of the series to converge to the first term
intensifies. Obviously, this assertion is relative. Since there is
an infinity of terms withn > 1, its joint contribution can be

. o ) _ of significance in spite of the implications of Eq. (24). The
Itis clear that the similarity of both asymptotic solutions aq it will depend on the value of the timecontained in

(smallBi and larger) cannot be casual. Both approximations he successive factors expE27). In conclusion, Eq. (24)

of the space-mean temperature, Egs. (10) and (20), arémay pe interpreted as follows. For am contained in
exponential. Moreover, they exhibit a curious reciprocity o _ gj < oo, there always exists an early regime dominated
property. The magnitude i approximates forlongtimes  py, the initial condition. However, a decreasing Biot number
and allBi but never satisfies the initial condition, Eq. (16b). n55 the effect of shortening its duration. Therefore, as
In contrastgy. is inaccurate for larg8i, but complies with - g;j _, 0, the temperature decay accommodates sooner into an

Eq. (16Db), and thus itis always exact for very shorttimes.  eyponential behavior, or, following the Russian terminology,
The question can be elucidated by studying how the 3 regular regime.

numerical value of the Biot number changes the behavior  Thjs interpretation is confirmed by examining in further

of the infinite series, i.e., the eigenvalues and constantsgetail the traditional criterion expressed by Egs. (21)—(22).
of the series solution [11,12]. Firstly, wheBi = 0, the  The key element here is that these critical times cover the

(24)

7. Comparison of lumped and one-term approximations

eigenconditions fof, become full range of Biot numbers and space coordinates, therefore
Large plate: hiding some valuable information. Table 3 reveals what
£, sing, =0 (23a) occurs if we rather g?ve _the resu_lts separately wih
_ as a parameter, considering, for instance, the flat plate.
Long cylinder: The figures have been calculated numerically by evaluating
_ Egs. (6) and (19) successively, with an increment of 0.01
J =0 23b
5nJ1(6n) (23b) in Bi and of 0.001 inc.
Sphere: The results are quite surprising. For the center and surface
£, cost, — sing, = 0 (23¢) temperatures, the critical time exhibits a maximum with

respect toBi, which is located forBi ~ 1.5 (This value

Inspection of these transcendental equations reveals thathas an uncertainty of the order &f0.2 due to the finite

in the three cases, the first eigenvalugis= 0, whereas resolution int and Bi). The usual, well-known criterion
&2, &3, ..., &, > 0. Substituting thereafter for the consta@ts logically refers to this absolute maximum, but it can be

listed in Table 1, we immediately obtadf), = 0 whenn > 1, relaxed depending on the cooling conditions given by the
Table 3
Critical dimensionless time for the attainment of the regular regime in a large plate

Values ofBi 0.01 0.05 0.1 0.5 1 15 5 10 50 o0

condition at the center

16(0, 7) — 61(0, 7)| < 0.01 0.00 0.00 0.06 0.20 0.23 0.24 0.22 0.20 0.18 0.17

condition at the surface

16(1,7) — 61(1, 7)| < 0.01 0.00 0.02 0.07 0.20 0.23 0.23 0.19 0.15 0.07 0.00
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extent of the Biot number. WheBi — 0, all critical times Recognizing at this point that a smd#i forces two
tend to zero, whereas they also decrease in theBmit co. kinds of exponential response, the next logical step is to
If we look for an intuitive explanation of this behavior, demonstrate that both regimes are actually the same. To
perhaps the following statements would be adequate. Thethis end, it suffices to use again the mathematical argument
regular regime means that the temperature variation acrosshat led us to Eq. (24). Since the first eigenvalue is zero
the coordinaten is reasonably represented by a single for Bi =0, the limit of any expression a8i — 0 is
analytical function, f(&1n) in Eq. (19) and Table 1. In  equivalent to the limit ag§; — 0. Applying this idea to the
other words, since the initial condition essentially implies eigenconditions of Table 1 with= 1, we could deduce that
a discontinuity a’n_: 1, some tlme must pass before we get lim &1 = (s Bi)L/2 (25)
rid of the necessity of specifying the temperature field by gi—o
an infinite series. The value of the Biot number influences g;ijar|
. " . . Y,
this transition creating two opposing effects. If the external
cooling of the body is reduced, this will favor the influence ~ lim_f (517) =1 (26)
of the initial discontinuity to last longer. However, at the ~ )
same time, the variation &f with 7 is also reduced, thus ~@nd the integralg’(§1) of Table 2:
facilitating its representation via a simple function. lim F(&) =1 (27)
For the sake of brevity, we only report detailed results Bi—0
for the large plate. Similar computations can be pursued for  The proof of all these propositions for the large plate, the
the long cylinder and the sphere, with a similar outcome. long cylinder and the sphere is presented in Appendix A. If
Maximum critical times with the values given in Eqg. (22) we combine Egs. (24)—(27), it is straightforward to conclude
always occur at the center, f@ ~ 2 (cylinder) andBi ~ that
2.3 (sphere). Interestingly, the curvature (and the ensuing . _
higher velocity of the transient) not only reduces the critical pm,?1(7: 7) = €XP(—s Bi7) =0..(7) (28)
times, but also slightly displaces the maxima to higher Biot and
numbers. B
As a additional result, details of the same calculation for lim 61(t) = exp(—sBit) =6.(7) (29)
the average temperature, Egs. (17) and (20), are presented in_ ) ) ) o
Table 4 for the tree elementary geometries. A condition of Accordingly, a cooling problem with a vanishingly small

validity was adopted to parallel that expressed by Eq. (21): Biot number may be conceived as the limit at which the reg-
_ ular regime extends down to an arbitrarily short time, and, as
|0 —61] <0.01 (21b)

a consequence, its validity encompasses the whole process.
A maximum critical time with respect td@i is still In other words, the one-term approximation is compelled to
observed, but the effects of averaging are appreciable: thesatisfy the initial condition; such a circumstance is what we
value is considerably lower (0.12 vs. 0.24 for the plate) usually call a lumped solution.
and occurs for more intense coolirigj,> 6. (The apparent It is equally noteworthy that the transition manifests it-
plateau around the maximum is wider, preventing us to self by a dramatic simplification of the geometry. As the
locate it with more precision irBi than approximately  Biot number decreases, the time constant of Egs. (19)—(20)
+1.5 with the resolution used.) Figures for the cylinder and changes to that of Eq. (10). The complicated influence of
the sphere are 0.10 and 0.09, respectively. Their locationgeometric shape, as expressed by the different eigencon-
is comparable to that of the plate; although the effect of ditions in Table 1, reduces to the parameter.e., to the
the curvature is still there, its magnitude is lesser. The volume-to-arearatio, by virtue of Eq. (25). Fig. 3 represents
calculation shows that the criteria expressed by Eq. (22) this perspective of the lumped approximation. The exact val-
can be noticeably relaxed when it is only a question of ues of¢; are compared with the result of Eq. (25) for the

considering the eigenfunctions,

approximating the spatial average temperature. Thesd, three one-dimensional bodies, confirming that the limit is at-

for timest longer than a critical value* given by tained in the vicinity oBi = 0.1. Therefore, we have arrived
0.12 large plate at a further fgrmulation of the cri.terion qf validity that is

*=10.10 long cylinder (22b) basically equivalent to those previously given. However, an
0.09 sphere important difference should be noted: the determination of a

Table 4

Critical dimensionless time for the validity of the one-term approximation of the average tempefttye; 61(7)| < 0.01

Values ofBi 0.01 0.05 0.1 0.5 1 15 5 10 50 00

Large plate 0.00 0.00 0.00 0.00 0.02 0.07 0.12 0.12 0.10 0.10

Long cylinder 0.00 0.00 0.00 0.00 0.02 0.06 0.10 0.10 0.09 0.09

Sphere 0.00 0.00 0.00 0.00 0.01 0.04 0.08 0.08 0.07 0.07
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Fig. 3. Variation of the first eigenvalue (exact and lumped limit) with the

Biot number. (a) Large plate. (b) Long cylinder. (c) Sphere.

acceptable maximum Biot number can now proceed without
the need of an iterative procedure.

8. Conclusions and per spective

In this paper, we have examined the lumped model of
unsteady heat conduction driven by convective cooling.
Using as a case-study the exact temperature solutions for
the three elementary, one-dimensional geometries, we have
demonstrated that

(1) The traditional condition of uniformity for a lumped
transient, Eq. (3), can be replaced by a maximum differ-
ence between the lumped temperature solufiprand
the exact space-mean temperatiw&his expresses the
intuitive fact that a temperature profile approximately
uniform equals its average, and may serve to deduce an
alternative criterion of validity for the lumped modg|,
as displayed in Fig. 2. This criterion is more sensitive to
the geometry than the usual one.

(2) The lumped solution, Eg. (10), and the one-term approx-
imations, Egs. (19) and (20), exhibit a reciprocity rela-
tionship. The former is the limit 88 — 0 of the general
infinite series solution, whereas the latter represent the
long-term solution, valid for times greater than an ar-
bitrary critical valuer*. The transitiorBi — 0 is equiva-
lenttot* — 0, so that it may be imagined as the regime
which connects the exponential lumped behavior with
the exponential one-term approximation.

(3) A further method for deriving the criterion of validity
can be based on the limiting behavior of the first
eigenvaluet, as exemplified in Fig. 3. Although the
condition is far less intuitive than the classical one, the
procedure has a significant advantage: the limit value
of the Biot number is deduced without resorting to an
iteration.

Needless to say, all these analyses can be extended to
more complex situations, as long as an infinite series solu-
tion is available. This comprises two- and three-dimensional
bodies whose temperatufds found by the method of sep-
aration of variables in the appropriate coordinate systems.
It should be noted that a condition imposed on the spatial
averaged can be very useful when the location of extreme
temperatures is not known a priori. In this respect, it may be
said that the criteria developed in this paper are more gen-
eral than those based on the customary condition expressed
by Eg. (3).

On the other hand, a kind of multidimensional problems
exist that could be directly handled by the methods consid-
ered in this study. The product of several series in the form of
Eq. (6) and Table 1 is known to represent the nondimensional
temperature field in simple geometries, such as a rectangu-
lar infinite beam or a finite cylinder. Any of the conditions
considered here (including the traditional one) can be simply
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combined to ascertain the accuracy of the lumped assump-|im C; = lim 2(singy — §1 COst1)
tion in these geometries. Bi—0 §—0 & —sinicoséy
_ 2(cos&y — cosEq + &1 Sin&q)
£-0  14sinPé —cofé
Acknowledgements L 2&sing £1

T 50 2sitE  &1-0SINEL

Next, to find the limit of the first eigenvalue, Eq. (25),
the three eigenconditions fég in Table 1 are written in this
manner:

(A.4c)
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original manuscript. Large plate:
. Sinél
Bi = A.5a
| | N | glCOSS]_ (A.5a)
Appendix A. Mathematical proof of thelimitsasBi — 0 Long cylinder:
To demonstrate the limiting behavior of the constants, g; _ & J1(51) (A.5b)
eigenvalues, eigenfunctions and integrals expressed in Jo(&1) '
Egs. (24)-(27) we need these two lemmas: Sphere:
. sina . in&p — &1¢c0
lim == =1 (A1)  pi= ML G100 (A50)
a—0 a singy
i Ji(a) 1 - 2 . . .
im =3 (A.2) Dividing by &{ and taking the limit, we easily deduce for
=0 a the large slab and the long cylinder, respectively:
The first is a well-know result. The second can be easily . .
. At ; . i Bi . sing& 1
deduced by applying L'Hépital’'s theorem: im = = lim — i =1.1=1 (A.6a)
e Bi—0 51 T 50 51 s,:ﬁo & cos&
J _ Jila) .
fim 229 _ jim ol@) — 7 lim E: lim B _ . NGy 1
a=0 a a—0 1 B~0£2  &-082 &0 & Jo(§r)
— lim Jo(a) — lim 72 1,1
a—0 a—0 a = E 1= E (A.6b)
=1—Ilim @) (A.3) Once again, the eigenvalue of the sphere demands a special
a=0 a treatment, resulting in:
where the rules of differentiation of Bessel functions have : .
: . B -
been used. Eq. (A.2) follows immediately from Eq. (A.3). lim —I = lim w
The limit of C; in Eq. (24) is found by substituting B—0& &0 & sing .
the conditionBi — 0 by its equivalent; — 0. Using the — Iim coséy — COsE1 + €1SINéy
formulae of Table 1 withm = 1, we obtain for the large T 50 2£1 Singy +512 COsEy
plate: o singy
im
2sin —02siné1 +&1c0
lim Cy= lim Cy= lim —51 & 51+ §100851
Bi—0 £1-0 £1—0 &1 + siny costy — im 1 1 1 (A.60)
. 2 2 50 ~2+1.1 3 '
= lim e =171° (A.4a) =02+ smg coséy
a0 Sing; T COSé1 + The limit of the first eigenfunctions in Table 1, Eq. (26),
Similarly, for the long cylinder: directly follows from elgmentary considerat.iong and
Egs. (A.1) and (A.2). Aside from a new application of
im Ci— i 2J1(61) L'Hopital’s theorem in the spherical case, the same argument
B0 © £0 £1(J2 (1) + J2(ED) holds for Eqg. (27) concerning the integradigé;) of Table 2.
2
=.m &1 2 2
10 T1(5D) (JO (‘i:l) + Jl (Sl)) References
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