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Abstract

This paper re-examines the venerable lumped model of unsteady heat conduction by means of a detailed study of the exact t
distributions in bodies of elementary geometry (i.e., large slab, long cylinder and sphere). The space-mean temperature is used
for demonstrating that the lumped calculation directly follows as a particular case from the infinite series solution of the general d
model. In this manner, several methods to find a limit Biot number can be established as simpler alternatives to the traditional p
Additionally, the discussion offers a different perspective of this classical subject of heat conduction theory, gaining more insig
limiting behavior of unsteady temperature distributions.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Fundamentally, the Biot number,Bi = hL/k, constitutes
a dimensionless form of the convective coefficient,h, that
regulates the heat transmission between the surface of a
body and a neighboring fluid. This heat exchange pro
occurs by way of an interplay of two thermal resistanc
one due to heat conduction within the body whose ther
conductivity isk, and the other arising from heat convecti
between the surface and the fluid.

To accept a simplistic lumped model of unsteady h
conduction, the conductive thermal resistance has to be
ligible in comparison with the convective thermal resistan
meaning thatBi becomes very small [1,2], i.e.,

Bi � 1 �⇒ T ≈ TL(t) (1)

where T is the real temperature field andTL designates
its estimation via the lumped assumption. Thereby,
criterion can be satisfied by certain bodies that

(a) are very small in size,
(b) are constructed from materials with large thermal c

ductivities, or
(c) are exposed to weak convective environments.
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From a strict quantitative standpoint, the question is, h
ever, how smallBi should be in order to comply with th
above condition.

For bodies of simple geometry (large slab, long cyl
der and sphere), the answer has been traditionally ded
from the distributed model of heat conduction [1,2]. Wh
subjected to a convective boundary condition, the analy
temperature solutions of the one-dimensional heat con
tion equation consistently reveal that whenever

Bi � 0.1 (2)

the ratio of the temperature at the surface to that at the ce
of the body differs from unity by less than 5%, i.e.,

T (L, t)− Tf
T (0, t)− Tf = Ts(t)− Tf

To(t)− Tf � 0.95 (3)

The development of this criterion involves a trial-and-er
procedure, in which the two extreme local values ofT
are compared for all times under progressively lower B
numbers until Eq. (3) is satisfied.

Based on these premises, the following categoric st
ment arises: The simple lumped model is amenable for
ations which are characterized byBi � 0.1, thus collapsing
the entire temperature distribution into a single value w
out large errors, Eq. (1). In contrast, forBi> 0.1, the lumped
model fails, and the general distributed model needs to
applied forcibly in order to computeT .
sevier SAS. All rights reserved.
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Nomenclature

A convective area

Bi Biot number,= hL/k
c specific heat

Cn constants of the series solution

f eigenfunctions of the series solution

F space integrals in the series solution ofθ̄ ,

Eq. (18)

h convection coefficient

k thermal conductivity

L characteristic length (half-thickness of a slab,

radius of a cylinder, radius of a sphere)

s geometric parameter

t time

T temperature
	T space-mean temperature

V volume

x space coordinate (Cartesian, cylindrical radius,

spherical radius)

Greek letters

α thermal diffusivity,= k/ρc
η dimensionless space coordinate,= x/L
θ dimensionless temperature,

= (T − Tf )/(Ti − Tf )
θ̄ dimensionless space-mean temperature,

= (	T − Tf )/(Ti − Tf )
ρ density
τ dimensionless time or Fourier number,= αt/L2

τ ∗ dimensionless critical times for the one-term
approximation

ξn eigenvalues for the series solution

Subscripts

1 first term of the series, one-term solution
f fluid
i initial
L lumped model
o center of the one-dimensional body,η= 0
s surface of the one-dimensional body,η= 1
n general term of the series
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Notwithstanding, a salient feature of this line of reason
should be made apparent. The comparison, as we
its companion error condition, Eq. (3), refer only to t
exact temperature distribution. A literature search indic
that a direct scrutiny involving the models themselves
conjunction with the two temperatures produced by th
(T andTL), has not been reported so far.

This paper seeks to answer the aforesaid question
convincing manner, linking the variations of temperat
with time produced by the two candidate models.
accomplish this objective, the spatial average ofT ,	T ,
is considered as the quantity to be compared withTL.
In fact, throughout the derivations and calculations, it
demonstrated that the lumped model is a particular c
of the more general distributed model for the space-m
temperature. When the latter is applied to the three sim
bodies in question under vanishingly small Biot numbe
the resultant infinite series solution for	T reduces to a singl
exponential expression which depends solely onBi. This
expression is finally shown to match the classical, lum
description of unsteady convective cooling.

2. Convective cooling of simple bodies

Fig. 1 illustrates the unsteady cooling of a one-dim
sional solid (large slab, long cylinder and sphere) w
uniform initial temperature,T = Ti , thoroughly. At t =
0, the body surface is suddenly exposed to a convec
environment which is characterized by a uniform h
transfer coefficient,h, and a constant fluid temperatur
Tf . The thermophysical properties of the material are
influenced by temperature.

An adequate set of dimensionless variables for
problem is

θ = T − Tf
Ti − Tf , η= x

L
, τ = αt

L2
, Bi = hL

k
(4)

whereTi − Tf ,L andL2/α are the scales adopted for t
temperatureT , the coordinatex and the timet , respectively.
The dimensionless time,τ , is also frequently designate
as the Fourier number. The Biot number,Bi, emerges as
controlling parameter. In accordance with these definitio
the distributed model of the physical situation describ
above can be compactly formulated as follows:

Heat conduction equation:

∂θ

∂τ
= 1

ηs−1

∂

∂η

(
ηs−1∂θ

∂η

)
(5a)

Initial condition:

θ(η,0)= 1 (5b)

Boundary conditions:

∂θ

∂η
(0, τ )= 0 (5c)

∂θ

∂η
(1, τ )= −Biθ(1, τ ) (5d)

In Eq. (5a), the geometric parameters identifies the appro
priate coordinate system:s = 1, 2, 3 for Cartesian, cylindrica
and spherical, respectively.
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Fig. 1. Unsteady cooling of elementary one-dimensional solids. (a) Symmetrical large plate. (b) Long cylinder. (c) Sphere.

Table 1
Eigenvalues, eigenfunctions and constants of the series solution, Eq. (6)

Geometry Eigenvaluesξn ConstantsCn Eigenfunctionsf (a)

Large plate ξn sinξn − Bi cosξn = 0 2sinξn
ξn+sinξn cosξn

cosa

Long cylinder ξnJ1(ξn)− BiJ0(ξn)= 0 2J1(ξn)

ξn(J
2
o (ξn)+J2

1 (ξn))
J0(a)

Sphere ξn cosξn + (Bi − 1)sinξn = 0 2(sinξn−ξn cosξn)
ξn−sinξn cosξn
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The exact dimensionless temperature distributio
θ(η, τ ), for each of the three basic geometries may be
tained by applying the method of separation of variable
Eqs. (5), to yield the summation of an infinite series:

θ(η, τ )=
∞∑
n=1

Cnf (ξnη)exp
(−ξ2

n τ
)

(6)

The corresponding eigenvaluesξn, eigenfunctionsf and
constantsCn have been summarized in Table 1 [1,2].

3. Lumped model of unsteady conduction

Whenever some restrictions are met, the same situa
can be also described by a far more simple lumped mo
The classical derivation starts by assuming the tempera
field T adequately represented by a uniform value, wh
we will designate asTL. Then, an overall energy balance
applied to the body at an arbitrary timet :

ρcV
dTL
dt

= −hA(TL − Tf ) (7a)

which, along with the initial condition

TL(0)= Ti (7b)

can be easily integrated to give

TL(t)− Tf
T − T = exp

(
− hA

ρcV
t

)
(8)
i f
It is interesting to notice that a characteristic time d
clearly appear in Eq. (8), given by the quotientρcV/hA.
Consequently, this time scale differs from the one emplo
previously in the distributed model, i.e.,L2/α. On the other
hand, the influence of geometry reduces to the volume
area ratio,V/A, to which the meaning of a characteris
length is usually attributed. In this manner, the length sc
for our three simple bodies would be also different:L,L/2
or L/3, depending on whether a large plate, a long cylin
or a sphere is being studied, respectively.

In spite of these considerations, Eqs. (7), (8) can be
in a coherent nondimensional form by using the previ
definitions of θ, τ and Bi in Eq. (4). To this end, it is
also necessary to reinterpret the parameters, noting that
the equalityV/A = L/s holds for the three elementa
geometries. Hence, Eqs. (7), (8) become

dθL
dτ

= −s BiθL(τ ) (9a)

θL(0)= 1 (9b)

θL(τ )= exp(−s Bi τ ) (10)

4. The concept of a space-mean temperature

A rigorous comparison between the distributed and lum
ed models should now directly proceed to examine th
independent solutions given by Eqs. (6) and (10). Howe
any intermediate step that properly eliminates the sp
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dependence of the exact solution would be indeed v
convenient. Sinceθ(η, τ ) is bounded inη, this avenue could
consist in adopting its maximum, which arises at the b
center,θ(0, τ ) = θo(τ ), and its minimum, occurring at th
surface,θ(1, τ )= θs(τ ). But independently of this idea, th
space-mean temperature offers more simplicity, and, a
will later demonstrate, more significance to the analysis.

The spatial average of the dimensional temperatureT is
defined as

	T (t)= 1

V

∫
V

T dV (11)

If we particularize the analysis to the one-dimensio
geometries, and use the definitions expressed in Eq. (4
corresponding nondimensional form reads

θ̄ (τ )= s
1∫

0

θηs−1 dη (12)

To explore the meaning of this global quantity, we m
recall that the heat conduction equation (5a) is merely
energy balance in differential form. Therefore, this chara
must be retrieved in a global sense by performing
integration with respect to the space variableη. Firstly,
Eq. (5a) is rearranged as

ηs−1∂θ

∂τ
= ∂

∂η

(
ηs−1∂θ

∂η

)
(13)

Both sides are now integrated withη from 0 to 1, and then
multiplied by the parameters:

s

1∫
0

ηs−1∂θ

∂τ
dη= s

1∫
0

∂

∂η

(
ηs−1∂θ

∂η

)
dη (14)

The left-hand side is reordered to permit the differentiat
with τ to occur first by virtue of the Leibnitz theorem [3
whereas the right-hand side can be integrated immediat

d

dτ

(
s

1∫
0

ηs−1θ dη

)

= s
[
ηs−1∂θ

∂η

]
η=1

− s
[
ηs−1∂θ

∂η

]
η=0

(15)

The term varying with time is recognized as the dim
sionless space-mean temperatureθ̄ , Eq. (12). Invoking the
boundary conditions, Eqs. (5c) and (5d), the second term
the right-hand side vanishes identically and the first te
simply becomes−s Biθ(1, τ ). Therefore, the conversio
procedure ends up with the following equation:

dθ̄

dτ
= −s Bi θs(τ ) (16a)

to which an initial condition can be attached, as ea
deduced from Eqs. (5b) and (12):

θ̄ (0)= 1 (16b)
Table 2
FunctionsF(ξn) for the series solution of the space-mean temperaturθ̄ ,
Eq. (17)

Geometry F(ξn)

Large plate sinξn
ξn

Long cylinder 2J1(ξn)
ξn

Sphere 3(sinξn−ξn cosξn)
ξ3
n

The correspondence between these expressions an
lumped model equations (9) is apparent. From a mathem
cal standpoint, it can be said that a problem involving a p
tial differential equation in two independent variables (sp
η and timeτ ) having the temperatureθ as the dependen
variable, Eq. (5a), has been gradually reduced to a first o
ordinary differential equation for the spatial average temp
atureθ̄ (τ ), Eq. (16a).

However, some information must have been lost du
the integration process. The consequence is that the r
hand side of Eq. (16a) is expressed in terms of the sur
temperatureθs(τ ). Since this quantity is unknown a prior
the degraded Eqs. (16) cannot be used to obtain an e
solution, although they may constitute the starting point
the implementation of approximate methods of the inte
type (see, for instance, [4]).

In order to calculateθ̄ , the series solution, Eq. (6),
introduced into Eq. (12), arriving at

θ̄ (τ )=
∞∑
n=1

CnF(ξn)exp
(−ξ2

n τ
)

(17)

whereF(ξn) is a shorthand notation for the integral

F(ξn)= s
1∫

0

f (ξnη)η
s−1 dη (18)

which is explicitly given in Table 2 for the three coordina
systems.

Incidentally, one should note that identical results can
obtained by particularizing Eq. (6) toη = 1, substituting
θs(τ ) = θ(1, τ ) in the global balance, Eq. (16a), and th
integrating it under the initial condition.

5. Lumped approximation of the space-mean
temperature

In any case, the preceding derivation sheds more light
the meaning of a lumped model. When theη-dependence
of the temperature distributionθ is weak,θ(η, τ ) ≈ θ̄ (τ ),
and, in particular,θ(1, τ )= θs(τ ) ≈ θ̄ (τ ). Substituting this
approximation in Eq. (16a), we retrieve Eq. (9a), so t
the differential problems stated by Eqs. (9) and (16)
now identical, and thus̄θ(τ )≈ θL(τ ) becomes an adequa
representation of the entire temperature field. Accordin
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Fig. 2. Difference between lumped and exact space-mean temperatur
time. (a) Large plate. (b) Long cylinder. (c) Sphere.

the spatial averagēθ should constitute the objective bas
for studying the accuracy of the lumped solutionθL.

The comparison between̄θ and θL is accomplished in
Fig. 2 by the simple expedient of representing the differe
θ̄ − θL versusτ , with the Biot number as a paramet
Eq. (17) has been evaluated numerically with an abso
precision better than 10−10, and the scales are logarithm
for clarity. Defined in this way, the error turns out
be always positive, indicating that a lumped calculat
overestimates the cooling of the body, inasmuch as
conduction resistance is neglected. The deviationθ̄ − θL
exhibits a maximum with respect toτ , which arises from
the fact that both temperatures share their initial condit
Eqs. (9b) and (16b). Starting fromτ = 0, the error grows, bu
it should end at zero, since the exact and lumped solut
also share an identical asymptotic character, due to
influence of the exponential functions.
.

The graphical results for differentBi show how the
generic criterion stated by Eq. (1) takes form. The class
inequalityBi � 0.1 approximately assures a maximum er
θ̄ − θL � 0.01 for the three simple bodies in hand, i.e., t
θ̄ ≈ θL.

Interestingly, this latter condition is slightly more sen
tive to the geometry than the traditional condition of unif
mity given by Eq. (3). ForBi = 0.1, the maximum tempera
ture differences in Fig. 2 are 0.0121 (slab), 0.0091 (cylind
and 0.0073 (sphere). In contrast, more precise figures
the temperature ratio of Eq. (3) atBi = 0.1 are very alike:
0.9520, 0.9518 and 0.9517, respectively. Therefore, the
ditional condition is somehow hiding these differences.

6. One-term approximation of the space-mean
temperature

The main feature of the lumped model solution, Eq. (1
is the exponential decay of temperature with time.
intriguing aspect of the exact solution provided by Eqs.
and (17) is that it parallels the same behavior, but in a ra
contorted way. Due to the periodic (or almost period
character of the eigenfunctions, there is an infinite num
of increasing eigenvaluesξn. Since the general term of th
infinite series contains the factor exp(−ξ2

n τ ), its magnitude
decreases withn for a givenτ . Therefore, an instant of tim
should exist at which the summation can be substituted
its first term with arbitrary precision. From that time o
Eqs. (6) and (17) reduce to

θ1(η, τ )= C1f (ξ1η)exp
(−ξ2

1τ
)

(19)

θ̄1(τ )= C1F(ξ1)exp
(−ξ2

1τ
)

(20)

The preceding simplification is of course remarkab
In fact, the above equations have been traditionally u
for giving the exact solutions of unsteady cooling witho
resorting to the summation of a series. The Heisler–Grö
charts [5,6] are the most representative example of
widespread practice. However, it is worth to remem
that Eq. (19) is only a partial solution, valid for lon
times. In particular, it does not satisfy the initial conditio
Eq. (5b). The usual criterion for accepting the first-te
approximation admits an error

|θ − θ1| � 0.01 (21)

for all values of the coordinateη and the parameterBi. Such
a condition results in a critical dimensionless time [7]:

τ ∗ =
{0.24 large plate

0.21 long cylinder
0.18 sphere

(22)

So that, ifτ � τ ∗, Eq. (19) accurately represents the ex
solution, i.e.,θ ≈ θ1. Furthermore, if this is satisfied at eve
point η, it should also apply to the spatial average. In ot
words, whenτ � τ ∗, Eq. (20) is also accurate andθ̄ ≈ θ̄1.
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Calculations betweenτ = 0 andτ ∗ demand the summa
tion of the series implied by Eqs. (6) and (17), with progr
sively worse convergence with decreasing time. There
however other possibilities, perhaps the most popular b
based on short-time expansions of the Laplace transform
which is an effective method in the absence of curvature
any case, the question has been also tackled from a
general perspective. The one-term solution is of expon
tial nature. Due to this unique attribute, Boussinesq de
nated it as a fundamental solution of unsteady heat con
tion (see, for instance, the book of Kudryavtsev [9]). In
Russian literature, the one-term approximation is commo
referred to as the regular cooling, conceived as an interm
ate regime between the initial condition and the final ste
state. Patankar [10] independently noted the analogy of t
concepts and the familiar notions of entrance and full de
opment in forced convection theory.

7. Comparison of lumped and one-term approximations

It is clear that the similarity of both asymptotic solutio
(smallBi and largeτ ) cannot be casual. Both approximatio
of the space-mean temperature, Eqs. (10) and (20),
exponential. Moreover, they exhibit a curious reciproc
property. The magnitude of̄θ1 approximates̄θ for long times
and allBi but never satisfies the initial condition, Eq. (16
In contrast,θL is inaccurate for largeBi, but complies with
Eq. (16b), and thus it is always exact for very short times

The question can be elucidated by studying how
numerical value of the Biot number changes the beha
of the infinite series, i.e., the eigenvalues and const
of the series solution [11,12]. Firstly, whenBi = 0, the
eigenconditions forξn become

Large plate:

ξn sinξn = 0 (23a)

Long cylinder:

ξnJ1(ξn)= 0 (23b)

Sphere:

ξn cosξn − sinξn = 0 (23c)

Inspection of these transcendental equations reveals
in the three cases, the first eigenvalue isξ1 = 0, whereas
ξ2, ξ3, . . . , ξn > 0. Substituting thereafter for the constantsCn
listed in Table 1, we immediately obtainCn = 0 whenn > 1,
-

,

butC1 becomes indeterminate. This limit can be reduce
expressions of the type sinξ1/ξ1 andJ1(ξ1)/ξ1, which do
have a definite value atξ1 = 0. For the sake of clarity, w
have left the mathematical details to an Appendix A. The
nal result is thatC1 equals unity whenBi is made arbitrarily
small.

Summarizing, the limit of the constantsCn asBi → 0 can
be expressed concisely as:

lim
Bi→0

Cn =
{

1 n= 1
0 n > 1

(24)

At a first glance, the discussion may appear trivial. Us
Eq. (24) andξ1 = 0 in the series solution, namely, Eqs. (
and (17), we obtainθ = θ̄ = 1. This reflects the obviou
fact that an insulated body,Bi = 0, would remain forever a
the initial state. Notwithstanding that, we can alternativ
consider the problem in whichBi → 0 without completely
vanishing. Then, Eq. (24) indicates that, asBi decreases
the tendency of the series to converge to the first t
intensifies. Obviously, this assertion is relative. Since the
an infinity of terms withn > 1, its joint contribution can be
of significance in spite of the implications of Eq. (24). T
result will depend on the value of the timeτ contained in
the successive factors exp(−ξ2

n τ ). In conclusion, Eq. (24
may be interpreted as follows. For anyBi contained in
0< Bi<∞, there always exists an early regime domina
by the initial condition. However, a decreasing Biot num
has the effect of shortening its duration. Therefore,
Bi → 0, the temperature decay accommodates sooner in
exponential behavior, or, following the Russian terminolo
a regular regime.

This interpretation is confirmed by examining in furth
detail the traditional criterion expressed by Eqs. (21)–(
The key element here is that these critical times cover
full range of Biot numbers and space coordinates, there
hiding some valuable information. Table 3 reveals w
occurs if we rather give the results separately withBi
as a parameter, considering, for instance, the flat p
The figures have been calculated numerically by evalua
Eqs. (6) and (19) successively, with an increment of 0
in Bi and of 0.001 inτ .

The results are quite surprising. For the center and sur
temperatures, the critical time exhibits a maximum w
respect toBi, which is located forBi ≈ 1.5 (This value
has an uncertainty of the order of±0.2 due to the finite
resolution inτ and Bi). The usual, well-known criterion
logically refers to this absolute maximum, but it can
relaxed depending on the cooling conditions given by
7

0

Table 3
Critical dimensionless time for the attainment of the regular regime in a large plate

Values ofBi 0.01 0.05 0.1 0.5 1 1.5 5 10 50 ∞
condition at the center

|θ(0, τ )− θ1(0, τ )| � 0.01
0.00 0.00 0.06 0.20 0.23 0.24 0.22 0.20 0.18 0.1

condition at the surface
|θ(1, τ )− θ1(1, τ )| � 0.01

0.00 0.02 0.07 0.20 0.23 0.23 0.19 0.15 0.07 0.0
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extent of the Biot number. WhenBi → 0, all critical times
tend to zero, whereas they also decrease in the limitBi → ∞.

If we look for an intuitive explanation of this behavio
perhaps the following statements would be adequate.
regular regime means that the temperature variation ac
the coordinateη is reasonably represented by a sin
analytical function,f (ξ1η) in Eq. (19) and Table 1. In
other words, since the initial condition essentially impl
a discontinuity atη = 1, some time must pass before we g
rid of the necessity of specifying the temperature field
an infinite series. The value of the Biot number influen
this transition creating two opposing effects. If the exter
cooling of the body is reduced, this will favor the influen
of the initial discontinuity to last longer. However, at t
same time, the variation ofθ with η is also reduced, thu
facilitating its representation via a simple function.

For the sake of brevity, we only report detailed resu
for the large plate. Similar computations can be pursued
the long cylinder and the sphere, with a similar outcom
Maximum critical times with the values given in Eq. (2
always occur at the center, forBi ≈ 2 (cylinder) andBi ≈
2.3 (sphere). Interestingly, the curvature (and the ens
higher velocity of the transient) not only reduces the criti
times, but also slightly displaces the maxima to higher B
numbers.

As a additional result, details of the same calculation
the average temperature, Eqs. (17) and (20), are presen
Table 4 for the tree elementary geometries. A condition
validity was adopted to parallel that expressed by Eq. (2∣∣θ̄ − θ̄1

∣∣� 0.01 (21b)

A maximum critical time with respect toBi is still
observed, but the effects of averaging are appreciable
value is considerably lower (0.12 vs. 0.24 for the pla
and occurs for more intense cooling,Bi � 6. (The apparen
plateau around the maximum is wider, preventing us
locate it with more precision inBi than approximately
±1.5 with the resolution used.) Figures for the cylinder a
the sphere are 0.10 and 0.09, respectively. Their loca
is comparable to that of the plate; although the effec
the curvature is still there, its magnitude is lesser. T
calculation shows that the criteria expressed by Eq.
can be noticeably relaxed when it is only a question
approximating the spatial average temperature. Thus,θ̄ ≈ θ̄1
for timesτ longer than a critical valueτ ∗ given by

τ ∗ =
{0.12 large plate

0.10 long cylinder (22b)

0.09 sphere
s

n

Recognizing at this point that a smallBi forces two
kinds of exponential response, the next logical step i
demonstrate that both regimes are actually the same
this end, it suffices to use again the mathematical argum
that led us to Eq. (24). Since the first eigenvalue is z
for Bi = 0, the limit of any expression asBi → 0 is
equivalent to the limit asξ1 → 0. Applying this idea to the
eigenconditions of Table 1 withn= 1, we could deduce tha

lim
Bi→0

ξ1 = (s Bi)1/2 (25)

Similarly, considering the eigenfunctions,

lim
Bi→0

f (ξ1η)= 1 (26)

and the integralsF(ξ1) of Table 2:

lim
Bi→0

F(ξ1)= 1 (27)

The proof of all these propositions for the large plate,
long cylinder and the sphere is presented in Appendix A
we combine Eqs. (24)–(27), it is straightforward to conclu
that

lim
Bi→0

θ1(η, τ )= exp(−s Bi τ )= θL(τ ) (28)

and

lim
Bi→0

θ̄1(τ )= exp(−s Bi τ )= θL(τ ) (29)

Accordingly, a cooling problem with a vanishingly sma
Biot number may be conceived as the limit at which the r
ular regime extends down to an arbitrarily short time, and
a consequence, its validity encompasses the whole pro
In other words, the one-term approximation is compelle
satisfy the initial condition; such a circumstance is what
usually call a lumped solution.

It is equally noteworthy that the transition manifests
self by a dramatic simplification of the geometry. As t
Biot number decreases, the time constant of Eqs. (19)–
changes to that of Eq. (10). The complicated influence
geometric shape, as expressed by the different eigen
ditions in Table 1, reduces to the parameters, i.e., to the
volume-to-area ratio, by virtue of Eq. (25). Fig. 3 represe
this perspective of the lumped approximation. The exact
ues ofξ1 are compared with the result of Eq. (25) for t
three one-dimensional bodies, confirming that the limit is
tained in the vicinity ofBi = 0.1. Therefore, we have arrive
at a further formulation of the criterion of validity that
basically equivalent to those previously given. However
important difference should be noted: the determination
10

9

07
Table 4
Critical dimensionless time for the validity of the one-term approximation of the average temperature,|θ̄ (τ )− θ̄1(τ )| � 0.01

Values ofBi 0.01 0.05 0.1 0.5 1 1.5 5 10 50 ∞
Large plate 0.00 0.00 0.00 0.00 0.02 0.07 0.12 0.12 0.10 0.

Long cylinder 0.00 0.00 0.00 0.00 0.02 0.06 0.10 0.10 0.09 0.0

Sphere 0.00 0.00 0.00 0.00 0.01 0.04 0.08 0.08 0.07 0.
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Fig. 3. Variation of the first eigenvalue (exact and lumped limit) with
Biot number. (a) Large plate. (b) Long cylinder. (c) Sphere.
acceptable maximum Biot number can now proceed with
the need of an iterative procedure.

8. Conclusions and perspective

In this paper, we have examined the lumped mode
unsteady heat conduction driven by convective cool
Using as a case-study the exact temperature solution
the three elementary, one-dimensional geometries, we
demonstrated that

(1) The traditional condition of uniformity for a lumpe
transient, Eq. (3), can be replaced by a maximum dif
ence between the lumped temperature solutionθL and
the exact space-mean temperatureθ̄ . This expresses th
intuitive fact that a temperature profile approximat
uniform equals its average, and may serve to deduc
alternative criterion of validity for the lumped modelθL,
as displayed in Fig. 2. This criterion is more sensitive
the geometry than the usual one.

(2) The lumped solution, Eq. (10), and the one-term app
imations, Eqs. (19) and (20), exhibit a reciprocity re
tionship. The former is the limit asBi → 0 of the genera
infinite series solution, whereas the latter represent
long-term solution, valid for timesτ greater than an ar
bitrary critical valueτ ∗. The transitionBi → 0 is equiva-
lent toτ ∗ → 0, so that it may be imagined as the regim
which connects the exponential lumped behavior w
the exponential one-term approximation.

(3) A further method for deriving the criterion of validit
can be based on the limiting behavior of the fi
eigenvalueξ1, as exemplified in Fig. 3. Although th
condition is far less intuitive than the classical one,
procedure has a significant advantage: the limit va
of the Biot number is deduced without resorting to
iteration.

Needless to say, all these analyses can be extend
more complex situations, as long as an infinite series s
tion is available. This comprises two- and three-dimensio
bodies whose temperatureθ is found by the method of sep
aration of variables in the appropriate coordinate syste
It should be noted that a condition imposed on the spa
averageθ̄ can be very useful when the location of extre
temperatures is not known a priori. In this respect, it may
said that the criteria developed in this paper are more
eral than those based on the customary condition expre
by Eq. (3).

On the other hand, a kind of multidimensional proble
exist that could be directly handled by the methods con
ered in this study. The product of several series in the form
Eq. (6) and Table 1 is known to represent the nondimensi
temperature field in simple geometries, such as a recta
lar infinite beam or a finite cylinder. Any of the conditio
considered here (including the traditional one) can be sim
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combined to ascertain the accuracy of the lumped assu
tion in these geometries.
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Appendix A. Mathematical proof of the limits as Bi → 0

To demonstrate the limiting behavior of the constan
eigenvalues, eigenfunctions and integrals expresse
Eqs. (24)–(27) we need these two lemmas:

lim
a→0

sina

a
= 1 (A.1)

lim
a→0

J1(a)

a
= 1

2
(A.2)

The first is a well-know result. The second can be ea
deduced by applying L’Hôpital’s theorem:

lim
a→0

J1(a)

a
= lim
a→0

J0(a)− J1(a)
a

1

= lim
a→0

J0(a)− lim
a→0

J1(a)

a

= 1− lim
a→0

J1(a)

a
(A.3)

where the rules of differentiation of Bessel functions h
been used. Eq. (A.2) follows immediately from Eq. (A.3)

The limit of C1 in Eq. (24) is found by substitutin
the conditionBi → 0 by its equivalentξ1 → 0. Using the
formulae of Table 1 withn = 1, we obtain for the large
plate:

lim
Bi→0

C1 = lim
ξ1→0

C1 = lim
ξ1→0

2 sinξ1
ξ1 + sinξ1 cosξ1

= lim
ξ1→0

2
ξ1

sinξ1
+ cosξ1

= 2

1+ 1
= 1 (A.4a)

Similarly, for the long cylinder:

lim
Bi→0

C1 = lim
ξ1→0

2J1(ξ1)

ξ1(J
2
0 (ξ1)+ J 2

1 (ξ1))

= lim
ξ1→0

2
ξ1

J1(ξ1)
(J 2

0 (ξ1)+ J 2
1 (ξ1))

= 2

2 · 1
= 1 (A.4b)

In the case of the sphere, we have to resort a second tim
L’Hôpital’s theorem:
- lim
Bi→0

C1 = lim
ξ1→0

2(sinξ1 − ξ1 cosξ1)

ξ1 − sinξ1 cosξ1

= lim
ξ1→0

2(cosξ1 − cosξ1 + ξ1 sinξ1)

1+ sin2 ξ1 − cos2 ξ1

= lim
ξ1→0

2ξ1 sinξ1
2 sin2 ξ1

= lim
ξ1→0

ξ1

sinξ1
= 1 (A.4c)

Next, to find the limit of the first eigenvalue, Eq. (25
the three eigenconditions forξ1 in Table 1 are written in this
manner:

Large plate:

Bi = ξ1 sinξ1
cosξ1

(A.5a)

Long cylinder:

Bi = ξ1J1(ξ1)

J0(ξ1)
(A.5b)

Sphere:

Bi = sinξ1 − ξ1 cosξ1
sinξ1

(A.5c)

Dividing by ξ2
1 and taking the limit, we easily deduce f

the large slab and the long cylinder, respectively:

lim
Bi→0

Bi

ξ2
1

= lim
ξ1→0

Bi

ξ2
1

= lim
ξ1→0

sinξ1
ξ1

1

cosξ1
= 1 · 1 = 1 (A.6a)

lim
Bi→0

Bi

ξ2
1

= lim
ξ1→0

Bi

ξ2
1

= lim
ξ1→0

J1(ξ1)

ξ1

1

J0(ξ1)

= 1

2
· 1 = 1

2
(A.6b)

Once again, the eigenvalue of the sphere demands a sp
treatment, resulting in:

lim
Bi→0

Bi

ξ2
1

= lim
ξ1→0

sinξ1 − ξ1 cosξ1
ξ2
1 sinξ1

= lim
ξ1→0

cosξ1 − cosξ1 + ξ1 sinξ1
2ξ1 sinξ1 + ξ2

1 cosξ1

= lim
ξ1→0

sinξ1
2 sinξ1 + ξ1 cosξ1

= lim
ξ1→0

1

2+ ξ1
sinξ1

cosξ1
= 1

2+ 1 · 1
= 1

3
(A.6c)

The limit of the first eigenfunctions in Table 1, Eq. (26
directly follows from elementary considerations a
Eqs. (A.1) and (A.2). Aside from a new application
L’Hôpital’s theorem in the spherical case, the same argum
holds for Eq. (27) concerning the integralsF(ξ1) of Table 2.
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